Abstract

The chiral-flexoelectrooptic effect in a Uniform Lying Helix (ULH) configuration provides a sub-millisecond in-plane rotation of the optic axis with the application of a transverse field. This enables displays with a wide viewing angle without costly in-plane-type electrodes. The salient challenge is one of alignment of the ULH, which is not topologically compatible with uniform alignment surface treatments. Here, we create a micro-grooved surface structure with features on the micron scale by using a replica-moulding technique. When the cell is assembled, the micro-grooves create channels, and using surface-energy considerations, we explain how and show experimentally that the channels align a cholesteric material in the ULH geometry with the helicoidal axis oriented parallel to the channels. The resultant alignment provides a high level of contrast between crossed polarizers and exhibits an electrooptic response with a switching time of the order of tens of microseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.