Abstract

Monte Carlo techniques are introduced in target transformation factor analysis (TTFA), in combination with the concept of the principal factor model, in order to account for local variances in the data set and to estimate the uncertainties in the obtained source profiles. The new method is validated using several types of artificial data sets. It was found that application of the Monte Carlo method leads to a significant improvement of the accuracy of the derived source profiles in comparison with standard TTFA. From the introduction of (known) error sources to the artificial data sets it was found that the source-profile reproduction quality is optimal if the magnitudes of the Monte Carlo variations are chosen equal to the magnitudes of the introduced errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.