Abstract

Abstract We make a unique contribution to momentum research by proposing a way to quantify momentum with performance indicators (i.e., features). We argue that due to measurable randomness in the NHL, sequential outcomes’ dependence or independence may not be the best way to approach momentum. Instead, we quantify momentum using a small sample of a team’s recent games and a linear line of best-fit to determine the trend of a team’s performances before an upcoming game. We show that with the use of SVM and logistic regression these momentum- based features have more predictive power than traditional frequency-based features in a pre-game prediction model which only uses each team’s three most recent games to assess team quality. While a random forest favors the use of both feature sets combined. The predictive power of these momentum-based features suggests that momentum is a real phenomenon in the NHL and may have more effect on the outcome of games than suggested by previous research. In addition, we believe that how our momentum-based features were designed and compared to frequency-based features could form a framework for comparing the short-term effects of momentum on any individual sport or team.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.