Abstract

Monte Carlo simulation has been carried out to study the benefits of using molecular markers in a conservation programme to minimize the homozygosity by descent in the overall genome. Selection of the breeding individuals was either at random or based on two alternative criteria: overall heterozygosity of the markers or frequency-dependent selection. Even molecular information was available for all the 1 900 simulated loci, a conventional tactic such as restriction in the variance of the family size is the most important strategy for maintaining genetic variability. In this context: a) frequency-dependent selection seems to be a more efficient criterion than selection for heterozygosity; and b) the value of marker information increases as the selection intensity increases. Results from more realistic cases (1, 2, 3, 4, 6 or 10 markers per chromosome and 2, 4, 6 or 10 alleles per marker) confirm the above conclusions. This is an expensive strategy with respect to the number of candidates and the number of markers required in order to obtain substantial benefits, the usefulness of a marker being related to the number of alleles. The minimum coancestry mating system was also compared with random mating and it is concluded that it is advantageous at least for many generations. © Inra/Elsevier, Paris

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call