Abstract

Minerals are widely used in the pulp and paper industry for aiding the processing, economics, and final quality of fiber-based products. Among these, calcium carbonate, talc, and kaolin are widely used as fillers, and these can have varying brightness, particle size distributions, and aspect ratios. For the molded fiber area, these minerals can raise the solids content of the pulp mixture and improve throughput and lower energy requirements for drying. Talc is also widely used as a process control agent, picking up pitch and stickies and improving productivity by lowering machine cleaning time. The replacement of single use plastic with fiber-based replacements is a global trend; however, it does come with some significant challenges, such as grease and moisture proofing. Previously, per- and polyfluoroalkyl substances (PFAS) have been used to provide functions such as water and grease repellency, but regulatory demands have seen its demise in the packaging industry. Therefore, water holdout is now generally achieved by addition of alkyl ketene dimer (AKD) sizing. Wax additives are being developed and tested as PFAS replacements for oil and grease resistance. Rather than strongly repelling lipids from the fiber surface, these PFAS alternatives restrict flow pathways and react with food oils to alter their flow characteristics to prevent penetration through the substrate. During studies incorporating both PFAS substitutes and minerals, no detrimental interactions were observed. This paper addresses the different needs of the molded fiber market by including mineral fillers in molded fiber articles and will be presented as a series of different case studies. In all studies, we show that the trends observed when mineral filler is added to molded fiber are broadly similar to those seen in conventional paper and paperboard applications. Mineral addition in all studies gave improvements in productivity and optical appearance. With its organophilic surface, hydrophobic talc had the additional advantage of pitch and sticky control, and although a small decrease in strength was always observed when filler was added, the final articles still retained sufficient strength for their particular application. This small strength reduction should be balanced against the productivity gains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call