Abstract
BackgroundThe classical spoligotyping technique, relying on membrane reverse line-blot hybridization of the spacers of the Mycobacterium tuberculosis CRISPR locus, is used world-wide (598 references in Pubmed on April 8th, 2011). However, until now no inter-laboratory quality control study had been undertaken to validate this technique. We analyzed the quality of membrane-based spoligotyping by comparing it to the recently introduced and highly robust microbead-based spoligotyping. Nine hundred and twenty-seven isolates were analyzed totaling 39,861 data points. Samples were received from 11 international laboratories with a worldwide distribution.MethodsThe high-throughput microbead-based Spoligotyping was performed on CTAB and thermolyzate DNA extracted from isolated Mycobacterium tuberculosis complex (MTC) strains coming from the genotyping participating centers. Information regarding how the classical Spoligotyping method was performed by center was available. Genotype discriminatory analyses were carried out by comparing the spoligotypes obtained by both methods. The non parametric U-Mann Whitney homogeneity test and the Spearman rank correlation test were performed to validate the observed results.ResultsSeven out of the 11 laboratories (63 %), perfectly typed more than 90% of isolates, 3 scored between 80-90% and a single center was under 80% reaching 51% concordance only. However, this was mainly due to discordance in a single spacer, likely having a non-functional probe on the membrane used. The centers using thermolyzate DNA performed as well as centers using the more extended CTAB extraction procedure. Few centers shared the same problematic spacers and these problematic spacers were scattered over the whole CRISPR locus (Mostly spacers 15, 14, 18, 37, 39, 40).ConclusionsWe confirm that classical spoligotyping is a robust method with generally a high reliability in most centers. The applied DNA extraction procedure (CTAB or thermolyzate) did not affect the results in this study. However performance was center-dependent, suggesting that training is a key component in quality assurance of spoligotyping. Overall, no particular spacer yielded a higher degree of deviating results, suggesting that errors occur randomly either in the process of re-using membranes, or during the reading of the results and transferring of data from the film to a digital file. Last, the performance of the microbead-based method was excellent as previously shown by Cowan et al. (J. Clin. Microbiol. 2004) and Zhang et al. (J. Med. Microbiol. 2009) and demonstrated the proper detection of spacer 15 that is known to occasionally give weak signals in the classical spoligotyping.
Highlights
The classical spoligotyping technique, relying on membrane reverse line-blot hybridization of the spacers of the Mycobacterium tuberculosis Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) locus, is used world-wide (598 references in Pubmed on April 8th, 2011)
In 1997, Kamerbeek et al provided a standardized reverse line blot hybridization method to genotype Mycobacterium tuberculosis complex (MTC) complex strains based on polymorphism of this region, and soon after, corresponding membranes were commercialized [7,8]
Recent studies point to the potential use of CRISPR loci for molecular epidemiological studies of other pathogens [9], and an increased knowledge of these bacterial genomic structures is likely to foster the development of new high-throughput genotyping methods, either for studies on population structure or molecular epidemiology
Summary
The classical spoligotyping technique, relying on membrane reverse line-blot hybridization of the spacers of the Mycobacterium tuberculosis CRISPR locus, is used world-wide (598 references in Pubmed on April 8th, 2011). Studies on the CRISPR region of Mycobacterium tuberculosis complex (MTC) strains started in 1993 [5]. In 1997, Kamerbeek et al provided a standardized reverse line blot hybridization method (spacer oligonucleotide typing = spoligotyping) to genotype MTC complex strains based on polymorphism of this region, and soon after, corresponding membranes were commercialized [7,8]. Recent studies point to the potential use of CRISPR loci for molecular epidemiological studies of other pathogens [9], and an increased knowledge of these bacterial genomic structures is likely to foster the development of new high-throughput genotyping methods, either for studies on population structure or molecular epidemiology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.