Abstract
Udder health remains a priority for the global dairy industry to reduce pain, economic losses, and antibiotic usage. The dry period is a critical time for the prevention of new intra-mammary infections and it provides a point for curing existing intra-mammary infections. Given the wealth of udder health data commonly generated through routine milk recording and the importance of udder health to the productivity and longevity of individual cows, an opportunity exists to extract greater value from cow-level data to undertake risk-based decision-making. The aim of this research was to construct a machine learning model, using routinely collected farm data, to make probabilistic predictions at drying off for an individual cow's risk of a raised somatic cell count (hence intra-mammary infection) post-calving. Anonymized data were obtained as a large convenience sample from 108 UK dairy herds that undertook regular milk recording. The outcome measure evaluated was the presence of a raised somatic cell count in the 30 days post-calving in this observational study. Using a 56-farm training dataset, machine learning analysis was performed using the extreme gradient boosting decision tree algorithm, XGBoost. External validation was undertaken on a separate 28-farm test dataset. Statistical assessment to evaluate model performance using the external dataset returned calibration plots, a Scaled Brier Score of 0.095, and a Mean Absolute Calibration Error of 0.009. Test dataset model calibration performance indicated that the probability of a raised somatic cell count post-calving was well differentiated across probabilities to allow an end user to apply group-level risk decisions. Herd-level new intra-mammary infection rate during the dry period was a key driver of the probability that a cow had a raised SCC post-calving, highlighting the importance of optimizing environmental hygiene conditions. In conclusion, this research has determined that probabilistic classification of the risk of a raised SCC in the 30 days post-calving is achievable with a high degree of certainty, using routinely collected data. These predicted probabilities provide the opportunity for farmers to undertake risk decision-making by grouping cows based on their probabilities and optimizing management strategies for individual cows immediately after calving, according to their likelihood of intra-mammary infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.