Abstract

Urgent needs concerning energy efficiency and environmental politics require novel approaches to materials design. One recent example is thereby the implementation of light-weight intermetallic titanium aluminides as structural materials for the application in turbine blades of aero-engines as well as in turbocharger turbine wheels for the next generation of automotive engines. Each production process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and / or subsequent heat-treatments. To develop sound and sustainable processing routes, knowledge on solidification processes and phase transformation sequences in advanced TiAl alloys is fundamental. Therefore, in-situ diffraction techniques employing synchrotron radiation and neutrons were used for establishing phase fraction diagrams, investigating advanced heat-treatments as well as for optimizing thermo-mechanical processing. Summarizing all results a consistent picture regarding microstructure formation and its impact on mechanical properties in advanced multi-phase TiAl alloys can be given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.