Abstract

The procedure used to discover subsurface formations where mineral resources may exist normally requires the accumulation and processing of large amounts of data concerning the earth’s fields. Data errors may strongly affect the conclusions drawn from the analysis. Thus, a method of checking for errors is essential. Since the field should be relatively smooth locally, a typical approach is to fit the data to a surface described by a low‐order polynomial. Deviations of data points from this surface can then be used to detect errors. Frequently a least‐squares approximation is used to determine the surface, but results could be misleading. Linear programming can be applied to give more satisfactory results. In this approach, the sum of the absolute values of the deviations is minimized rather than the squares of the deviations as in least squares. This paper describes in detail the formulation of the linear programming problem and cites an example of its application to error detection. Through this formulation, once errors are removed, the results are meaningful physically and, hence, can be used for detecting subsurface phenomena directly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.