Abstract

The paper reviews the linear mixed models (LMM) methodology that is suitable for the statistical and genetic analyses of spatially repeated measures collected from clonal progeny tests. For example, we consider a poplar clonal trial where progenies of different families are propagated by cuttings, and only one ramet per clone is planted on each block. Modeling covariance structures following the LMM theory allows improving genetic parameter estimation based on clonal testing. Besides variance components, we also obtained an estimate of the covariance between residuals (within clonal effects in two different blocks). This covariance is due to planting more than one ramet from the same genotype in the same trial, which generates correlated residual effects from different blocks. Its estimation can significantly improve the comparison among clones within a progeny test or between tests in a clonal testing network. Results indicate that the covariance is also a component of the genetic variance estimator and plays a significant role in assessing the variance of specific (micro) environmental effects. A positive covariance implies that ramets show a similar performance in more than one block. Thus, a larger and more positive covariance implies a stronger genetic effect controlling the expression of the trait in the local environment and a smaller variance of specific environmental effects. On the contrary, a negative covariance implies that the performance of individual ramets is affected by strong microenvironmental effects, specific to one or more blocks, which can also directly increase the within-clone variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call