Abstract

Heavy rains on February 24, 2020, caused flooding in most parts of Jakarta and its surroundings. The one-day observation of accumulated rainfall from the Laser Precipitation Monitor (LPM) was recorded at 358.6 mm/day at the Kemayoran station on February 25, 2020, at 00.00 UTC (07.00 Jakarta Time). In this study, analysis of the microphysical characteristics of extreme rainfall using LPM installed at Kemayoran meteorology station and weather radar at Cengkareng meteorology station with a spatial radius of 250 km. LPM is used to measure the diameter of the raindrops, the velocity of falling raindrops, LPM reflectivity, and the amount of accumulated rainfall with time resolution per minute and stored in excel data format. While the weather radar is used to measure the reflectivity spatially and temporally in the data volume format (.vol). The method used is, first, to find the relationship between LPM reflectivity and the amount of LPM rainfall with regression analysis. Second, the radar reflectivity is converted into estimated rainfall intensity for the Jakarta area and its surroundings. The results of this study found a relationship between LPM reflectivity (X) and rainfall accumulation LPM (Y) to form a regression relationship with the formula Y = 0.013X with R2 = 0.3777. Based on the record of the LPM time series, the peak of rainfall occurred at 18.17 UTC with 1000 raindrops, the maximum fall speed was 10 m/s, and the maximum diameter is 8.5 millimeters. Based on the results of microphysical measurements of LPM, spatial plots, and vertical cross-section radar, it can be concluded that flooding in Jakarta is due to heavy rain from convective clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.