Abstract
The use of a kinematic hardening soil model for predicting short- and long-term ground movements due to tunnelling in London Clay is investigated. The model is calibrated against oedometer and triaxial tests on intact samples from different units of the London Clay. The calibrated model is then used in finite-element analysis to simulate the field response at St James's Park during excavation of the Jubilee Line Extension tunnels. The finite-element predictions compare well with the available field monitoring data. The importance of using consistent initial conditions for this complex boundary value problem in conjunction with the model parameters selected is highlighted. The stiffness response of different regions of the finite-element mesh indicates that the rate at which the stiffness degrades and the stiffness response further away from the tunnel boundary affect the short-term predictions significantly. The long-term predictions confirm that the compression characteristics of the soil control the magnitude of the consolidation settlements and its permeability the shape of the long-term settlement profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.