Abstract

Unscented Kalman Filter (UKF) is a technique used in non-linear applications and dynamic systems identification (e.g. tracking marine vessels and ships) that require state and parameter estimation. This paper studies Kalman Filter (KF) based techniques for tracking ships using Global Positioning System (GPS) data. The present work proposes to exploit information from GPS sensors in order to track a ship in real-time. The absence and presence problem of a ship is handled by a applying KF theory to analyze GPS coordinates and compare current marine vessel routes to previously recorded ones. To study tracking performance, the system was implemented in C++ and simulation results demonstrate the feasibility and high accuracy of the proposed tracking method

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.