Abstract

The use of iron ore as an alternative to conventional Fischer–Tropsch synthesis (FTS) iron catalyst has been identified as a way to achieve a cost-effective catalyst. In recent times, considerable progress has been made to build a strong case for iron ore as a viable alternative to traditional iron catalysts. Nevertheless, there are still opportunities to enhance the current iron ore low-temperature Fischer–Tropsch (LTFT) catalysts and pave the way for optimal performing catalysts. In this study, we thoroughly examined the various publications on iron ore catalysts used for FTS and highlighted the research gaps in the studies. The study identified the progress made so far, opportunities, and challenges regarding the use of iron ore as a catalyst in FTS. One of the critical areas that needs to be addressed from the review is establishing the deactivation pathways of these catalyst systems. The application of advanced spectroscopic and computational methods is also suggested to elucidate the relationship between the synthesis conditions, active catalytic sites, reaction intermediates, and catalytic performance to fabricate optimized iron ore LTFT catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.