Abstract

Codeine is an analgesic with uses similar to morphines, but it is of much less effect, i.e., it had a mild sedative effect; codeine is usually used as the phosphate form (Cod.P) and is often administrated by mouth with aspirin of paracetamol. Due to its serious use, if it is in large dose, attention is paid in this research to the synthesis and stereochemistry of new iron, cobalt, nickel, copper, and zinc complexes of this drug in both solution and the solid states. The spectra of these complexes in solution and the study of their stoichiometry refer to the formation of 1:1 ratio of metal (M) to ligand (L). The steriochemical structures of the solid complexes were studied on the basis of their analytical, spectroscopic, magnetic, and thermal data. Infrared spectra proved the presence of M O bonds. Magnetic susceptibility and solid reflectance spectral measurements were used to infer the structures. The prepared complexes were found to have the general formulae [ML(OH) x (H 2O) y ](H 2O) z H 3PO 4, M: Co(II), Ni(II), and Cu(II), x = 1, y = 0, z = 0; M: Fe(II), x = 1, y = 2, z = 1; Fe(III), x = 2, y = 1, z = 0; Co(III), x = 0, y = 2, z = 1; Zn(II), x = 1, y = 0, z = 3; and L: (Cod.P) of the general formula C 18H 24NO 7P (anhydrate). Octahedral, tetrahedral, and square planer structures were proposed for these complexes depending upon the magnetic and reflectance data and were confirmed by detailed mass and thermal analyses comparative studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call