Abstract

Previous attempts to use inverse dynamics solutions in direct dynamics simulations have failed to replicate the input data of the inverse dynamics problem. Measurement and derivative estimation error, different inverse dynamics and direct dynamics models, and numerical integration error have all been suggested as possible causes of inverse dynamics simulation failure. However, using a biomechanical model of the type typically used in gait analysis applications for inverse dynamics calculations of joint moments, we produce a direct dynamics simulation that exactly matches the measured movement pattern used as input to the inverse dynamic problem. This example of successful inverse dynamics simulation demonstrates that although different inverse dynamics and direct dynamics models may lead to inverse dynamics simulation failure, measurement and derivative estimation error do not. In addition, inverse dynamics simulation failure due to numerical integration errors can be avoided. Further, we demonstrate that insufficient control signal dimensionality (i.e., freedom of the control signals to take on different "shapes"), a previously unrecognized cause of inverse dynamics simulation failure, will cause inverse dynamics simulation failure even with a perfect model and perfect data, regardless of sampling frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.