Abstract

Phosphoserine/threonine-binding domains integrate intracellular signal transduction events by forming multiprotein complexes with substrates of protein serine/threonine kinases. These phosphorylation-dependent molecular recognition events are responsible for coordinating the precise temporal and spatial response of cells to a wide range of stimuli, particularly those involved in cell cycle control and the response to DNA damage. The known families of phosphoserine/threonine-binding modules include 14-3-3 proteins, WW domains, FHA domains, WD40 repeats, and the Polo-box domains of Polo-like kinases. Peptide-library experiments reveal the optimal sequence motifs recognized by these domains, and facilitate high-resolution structural studies elucidating the mechanisms of phospho-dependent binding and the molecular basis for domain function within intricate signaling networks. Information emerging from these studies is critical for the design of novel experimental and therapeutic tools aimed at altering signal transduction cascades in normal and diseased cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.