Abstract
Articular cartilage may experience iatrogenic injury during routine orthopaedic/arthroscopic procedures. This could cause chondrocyte death, leading to cartilage degeneration and posttraumatic osteoarthritis. In an in vitro cartilage injury model, chondrocyte death was reduced by increasing the osmolarity of normal saline (NS), the most commonly-used irrigation solution. Here, we studied the effect of hyperosmolar saline (HS) on chondrocyte viability and cartilage repair in an in vivo injury model. Cartilage injury was induced by a single scalpel cut along the patellar groove of 8 week old rats in the absence of irrigation or with either NS (300 mOsm) or HS (600 mOsm). The percentage of cell death (PCD) within the injured area was assessed using confocal microscopy. Repair from injury was evaluated by histology/immunostaining, and inflammatory response by histology, cytokine array analysis and ELISA (enzyme-linked immunosorbent assay). The PCD in saline-irrigated joints was increased compared to non-irrigated (NI) joints [PCD = 20.8% (95%CI; 14.5, 27.1); PCD = 9.14% (95%CI; 6.3, 11.9); P = 0.0017]. However, hyperosmotic saline reduced chondrocyte death compared to NS (PCD = 10.4% (95%CI; 8.5, 12.3) P = 0.0024). Repair score, type II collagen and aggrecan levels, and injury width, were significantly improved with hyperosmotic compared to NS. Mild synovitis and similar changes in serum cytokine profile occurred in all operated joints irrespective of experimental group. Hyperosmotic saline significantly reduced the chondrocyte death associated with scalpel-induced injury and enhanced cartilage repair. This irrigation solution might be useful as a simple chondroprotective strategy and may also reduce unintentional cartilage injury during articular reconstructive surgery and promote integrative cartilage repair, thereby reducing the risk of posttraumatic osteoarthritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.