Abstract

When developing technological systems, it becomes necessary to transmit information over significant distances without the use of traditional means of communication, because they can not be used, for example, in the field of geonavigation when drilling inclined / horizontal wells. One of the possible channels for transmitting information in this area is the hydraulic communication channel (HCC). Therefore, at present, the task of developing an effective method and approach for transmitting information on the HCC becomes urgent. The purpose of this work was to create a mathematical model of the HCC to provide practical recommendations when used in technology to assess the possibility of transmitting information on it without conducting costly field tests. The article presents a mathematical model of the HCC, which is a long hydroline, taking into account the boundary conditions at its input and output from it. The input boundary condition is represented by a piston pump with a crank-and-rod drive mechanism. The output boundary condition is represented by a throttle - a mechanical device capable of overlapping the pass channel in the hydrolysis line, thereby creating pressure pulses through which useful transmitted information is generated over the HCC. The obtained characteristic for the relative instantaneous feed Q is shown as a function of the angle φ of rotation of the pump shaft. A relation is given that establishes the relationship between the area of the opened throttle windows and the angle of rotation of its shaft. Two applied methods for encoding information in technological systems for information transmission are considered and a dependence for the attenuation of the signal amplitude during data transmission over the HCC is given. A mathematical simulation of the system with HCC and the described boundary conditions is performed. The form of the pressure pulse is obtained. Based on the results of the work, conclusions were drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call