Abstract

In this study a combination of helical springs and fluid dampers are proposed as isolation and energy dissipation devices for bridges subjected to earthquake loads. Vertical helical springs are placed between the superstructure and substructure as bearings and isolation devices to support the bridge and to eliminate or minimize the damage due to earthquake loads. Additionally, horizontal helical springs are placed between the abutments and bridge deck to save the structure from damage. Since helical springs provide stiffness in any direction, a multi-directional seismic isolation system is achieved which includes isolation in the vertical direction. To reduce the response of displacement, nonlinear fluid dampers are introduced as energy dissipation devices. Time history analysis studies conducted show that the proposed bridge system is sufficiently flexible to reduce the response of acceleration. The response of displacement due to provided flexibility is effectively controlled by the addition of energy dissipation devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.