Abstract

To study the high strain rate shear behaviour of Ti–6Al–4V, hat-shaped specimens have been used in a compression split Hopkinson bar set-up. With this technique, highly concentrated shear strains are obtained which eventually cause strain localization and adiabatic shear bands (ASB). Because of the complex stress distribution in the specimen, interpretation of the experimental results is not straightforward. In this paper, results of a comprehensive experimental and numerical study are presented, aiming at a more judicious use of hat-shaped specimens and a fundamental understanding of the obtained results. Specimens with different dimensions are considered. It is found that the width of the shear region and the radius of the corners are the most important parameters. The first mainly affects the homogeneity of stresses and deformations in the shear zone and the presence of a hydrostatic stress next to the shear stress, while the latter primarily governs the initiation of the ASB. The relation between the global measured response and the local material behaviour is studied. It is shown that, within certain limits, the shear stress in the shear region can be extracted from the measured force. Several experiments which have been interrupted at a certain level of deformation have been carried out. The microstructure could thus be observed at different stages: onset of strain localization, formation of ASBs, initiation and propagation of micro-cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.