Abstract

This study evaluated the synthesis of protic ionic liquids (PILs), 2-hydroxy ethylammonium formate (2-HEAF) and 2-hydroxy ethylammonium acetate (2-HEAA), and their applicability in the crystallization process of the active pharmaceutical ingredient isoniazid (INH) as anti-solvent. Isoniazid is an antibiotic used in the treatment of tuberculosis infections, being used as a first-line chemotherapeutic agent against Mycobacterium tuberculosis. Futhermore, this investigation was conducted in order to evaluate how these PILs can influence the habit, solubility, stability, and therapeutic efficiency of the obtained isoniazid crystals. The 2-HEAF and 2-HEAA PILs were easily formed in reactions between ethanolamine and carboxylic acids (formic or acetic acid), and they have no toxicity against Artemia salina. The PILs were able to crystallize isoniazid, influencing the crystal habit and size. The greatest variations in the hydrogen signals of the NH2 and NH groups of the amine and low variations in the chemical shifts of the hydrogens of the cation of the ethanolamine group from 2-HEAA and 2-HEAF indicate that PILs establish possibly weak interactions with INH. The obtained crystals were amorphous and showed higher solubility in water than standard INH. Moreover, these crystals showed therapeutic efficiency inantimycobacterial activity to inhibit the growth of Mycobacterium tuberculosis. The INH:2-HEAF only degraded 5.1 % (w/w), however, INH:2-HEAA degraded 32.8 % (w/w) after 60 days in an accelerated atmosphere. Then, the 2-HEAA and 2-HEAF were able to crystallize isoniazid, being a new application for these PILs. The used PILs also influenced the characteristics of isoniazid crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call