Abstract

Schistosomiasis is an important parasitic disease affecting >207 million people in 76 countries around the world and causing approximately 250,000 deaths per year. At present, the main strategy adopted for the control of schistosomiasis is the use of safe chemotherapy, such as praziquantel. However, the high rates of reinfection after treatment restrict the use of this treatment approach and assume the need for other forms of control such as vaccination. Sm29 is a protein that is localized in the Schistosoma mansoni tegument of adult worms and schistosomula and is considered a powerful vaccine candidate. Because of the chemical, physical and immunological characteristics of nanoparticles, nanocarriers have received increasing attention. In the field of nanotechnology, gold nanorods are considered potential vaccine carriers. In this study, we bound S. mansoni rSm29 protein to gold nanorods either directly or by cysteamine functionalization. When the worm burden was evaluated, the AuNRs-NH2-rSm29 group of immunized mice showed the best protection level (34%). Following AuNRs-NH2-rSm29 immunization, we observed a Th1 immunological response in mice with higher production of IFN-γ, mainly by CD4+ and CD8+ T cells. Furthermore, AuNRs-NH2-rSm29 could activate dendritic cells in vitro, enhancing MHCII and MHCI expression and the production of IL-1β in a NLRP3-, ASC- and Caspase-1-dependent manner. In summary, our findings support the use of nanorods as an immunization strategy in vaccine development against infectious diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call