Abstract

Electronic cigarettes (e-cigarettes) are an increasingly popular alternative to combustible tobacco cigarettes among smokers worldwide. A growing body of research indicates that flavours play a critical role in attracting and retaining smokers into the e-cigarette category, directly contributing to declining smoking rates and tobacco harm reduction. The responsible selection and inclusion levels of flavourings in e-liquids must be guided by toxicological principles. Some flavour ingredients, whether natural extracts or synthetic, are known allergens. In this study, we used the Genomic Allergen Rapid Detection (GARD) testing strategy to predict and compare the respiratory and skin sensitising potential of three experimental and two commercial e-liquids. These novel, myeloid cell-based assays use changes in the transcriptional profiles of genomic biomarkers that are collectively relevant for respiratory and skin sensitisation. Our initial results indicate that the GARD assays were able to differentiate and broadly classify e-liquids based on their sensitisation potential, which are defined mixtures. Further studies need to be conducted to assess whether and how these assays could be used for the screening and toxicological assessment of e-liquids to support product development and commercialisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.