Abstract

A generalised kinematically admissible velocity field is derived for axisymmetric extrusion through curved dies by employing rigid-plastic boundaries expressed in terms of arbitrarily chosen continuous functions. The corresponding upper-bound extrusion pressure is related directly to boundary functions for the plastically deforming region when the die shape, lubrication condition and material characteristics of the billet are given. The proposed method of analysis makes it possible to predict the deformation pattern as well as extrusion pressure. In computation a third-order polynomial is chosen for the die boundary and the bounding function for the plastic region is chosen to be a fourth-order polynomial. The workhardening effect is considered in the formulation. The plastic boundaries as well as stream lines are affected by various process parameters. The theory predicts the relatively faster axial flow at the center than near the die boundary for greater friction factor even with the same die shape. The effects of area reduction and die length are also discussed in relation to extrusion pressure and deformation. Experiments are carried out for steel billets at room temperature. Deformation patterns are measured for several area reductions by the photoetching technique and the extrusion pressure is measured using a load-cell. The predicted extrusion pressure is in excellent agreement with the value computed by the finite element method. The deformation patterns agree well with the experimental observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call