Abstract
AbstractThe authenticity of high value edible fats and oils including extra virgin olive oil (EVOO) is an emerging issue, currently. The potential employment of Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics of multivariate calibration and discriminant analysis has been exploited for rapid authentication of EVOO from canola oil (Ca‐O). The optimization of two calibration models of partial least square (PLS) and principle component regression was performed in order to quantify the level of Ca‐O in EVOO. The chemometrics of discriminant analysis (DA) was used for making the classification between pure EVOO and EVOO adulterated with Ca‐O. The individual oils and their blends were scanned on good contact with ZnSe crystals in horizontal attenuated total reflectance, as a sampling technique. The wavenumbers of 3,028–2,985 and 1,200–987 cm−1 were used for quantification and classification of EVOO adulterated with Ca‐O. The results showed that PLS with normal FTIR spectra was well suited for quantitative analysis of Ca‐O with a value of the coefficient of determination (R2) > 0.99. The error, expressed as root mean square error of calibration obtained was relatively low, i.e. 0.108 % (v/v). DA can make the classification between pure EVOO and that adulterated with Ca‐O with one misclassified reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.