Abstract

The carbohydrate specificity of the two enzymes that catalyze the metabolic interconversions in the sorbitol pathway, aldose reductase and sorbitol dehydrogenase, has been examined through the use of fluoro- and deoxy-substrate analogs. Hydrogen bonding has been shown to be the primary mode of interaction by which these enzymes specifically recognize and bind their respective polyol substrates. Aldose reductase has broad substrate specificity, and all of the fluoro- and deoxysugars that were examined are substrates for this enzyme. Unexpectedly, both 3-fluoro- and 4-fluoro- d-glucose were found to be better substrates, with significantly lower K m and higher k cat/ K m values than those of d-glucose. A more discriminating pattern of substrate specificity is observed for sorbitol dehydrogenase. Neither the 2-fluoro nor the 2-deoxy analogs of d-glucitol were found to be substrates or inhibitors, suggesting that the 2-hydroxyl group of sorbitol is a hydrogen bond donor. The 4-fluoro and 4-deoxy analogs are poorer substrates than sorbitol, also implying a binding role for this hydroxyl group. In contrast, both 6-fluoro- and 6-deoxy- d-glucitol are very good substrates for sorbitol dehydrogenase, indicating that the primary hydroxyl group at this position is not involved in substrate recognition by this enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.