Abstract

Traditionally, soft sensors are developed based on measurement data only, but here we consider an adaptive soft sensor that uses data generated from a fitted, first principles model of the distillation columns. The contribution of the paper is a procedure for moving window soft sensor design that incorporates a priori knowledge, which is especially suitable when the training sample is small and contains measurement errors. In addition, we propose a continuous adaptation of all model parameters based on new data, instead of the usual procedure of only updating the bias. The accuracy of the predicted product quality is investigated by calculating the coefficient of determination and root mean squared error for the test sample. Several approaches were considered, and we found that a constrained optimization approach was superior. The constraints on the model parameters of soft sensors are derived from a fitted, rigorous distillation unit model. The improved estimator quality resulted in the successful industrial application of advanced process control systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.