Abstract

Environmental DNA (eDNA) metabarcoding is increasingly being used to assess community composition in coastal ecosystems. In this study, we chose to examine temporal and spatial changes in the aquatic community of Manly Lagoon – one of the most heavily developed and polluted estuaries in eastern Australia. Based on metabarcoding of the 16S mitochondrial gene (for fish) and the 18S nuclear gene (for macroinvertebrates), we identified seasonal differences in fish and macroinvertebrate community composition as well as species richness, which correlated, in some cases, with the environmental parameters of sea surface temperature and freshwater input. Moreover, given the greater taxonomic resolution of fish versus macroinvertebrate assignments, we identified several known migratory fish species of management importance that contributed significantly to the overall patterns observed. Overall, our data support the use of eDNA metabarcoding to track fish assemblages shifting in response to environmental drivers in polluted estuaries with increased sampling and consultation with historical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.