Abstract
Two kinds of filtered networks: minimum spanning trees (MSTs) and planar maximally filtered graphs (PMFGs) are constructed from dynamical correlations computed over a moving window. We study the evolution over time of both hierarchical and topological properties of these graphs in relation to market fluctuations. We verify that the dynamical PMFG preserves the same hierarchical structure as the dynamical MST, providing in addition a more significant and richer structure, a stronger robustness and dynamical stability. Central and peripheral stocks are differentiated by using a combination of different topological measures. We find stocks well connected and central; stocks well connected but peripheral; stocks poorly connected but central; stocks poorly connected and peripheral. It results that the Financial sector plays a central role in the entire system. The robustness, stability and persistence of these findings are verified by changing the time window and by performing the computations on different time periods. We discuss these results and the economic meaning of this hierarchical positioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.