Abstract

The purpose of this study was to examine the use of a dynamic mechanical analyzer (DMA) system to study the viscoelastic nature of bone. Cortical bone specimens from human femora were tested isothermally for 150 min at 37 degrees C and the loss factor (tan delta) and storage modulus (E') were measured. To explore the effects of test conditions on tan delta and E', different levels of applied stress, two specimen sizes, and two hydration conditions (wet and vacuum-dried) were evaluated. Finally, nonisothermal tests were performed, wherein specimens were heated up to 70 degrees C at different heating rates: 1 degrees C/min, 3 degrees C/min, and 5 degrees C/min. The results indicated that a threshold level of minimum applied stress was required to obtain repeatable and relatively constant values of tan delta. Specimen size did not significantly affect tan delta although it influenced E'. Moisture content had a significant effect on tan delta; vacuum-dried specimens exhibited a lower tan delta compared to wet specimens. Lastly, heating rates influenced tan delta values with lower rates producing more consistent results. The study demonstrated that DMA can be used as an effective tool to test bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call