Abstract

Our work highlights the importance of using disaggregated demand information at store level to improve sales forecasts and stock allocation during sales promotions. Monte Carlo simulation and optimisation modelling were used to estimate short-term promotional impacts. Supermarket loyalty card data was used from a major UK retailer to identify the benefits of using disaggregated demand data for improved forecasting and stock allocation. The results suggest that there is a high degree of heterogeneity in demand at individual store level due to number of factors including the weather, the characteristics of shoppers, the characteristics of products and store format, all of which conspire to generate significant variation in promotional uplifts. The paper is the first to use supermarket loyalty card data to generate store level promotional forecasts and quantify the benefits of disaggregating the allocation of promotional stock to the level of individual stores rather than regional distribution centres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.