Abstract

A novel detection system for the determination of glucose in the presence of clinically important interferents, based on the use of dual sensors and flow-injection analysis (FIA), is described. The normalisation methodology involves measurement of the interference signal at a reference sensor; this signal can then be subtracted from the glucose sensor signal (post-run) to give a corrected measurement of the glucose concentration. The detection system consists of a thin layer cell with dual glassy carbon working electrodes. One electrode was surface modified to act asglucose biosensor by immobilisation of glucose oxidase (GOx) (from Aspergillus niger) with 1% glutaraldehyde and bovine serum albumin. The second electrode (glucose oxidase omitted) was utilised to measure the interference signal responding only to electroactive species present in the injected sample. A computer controlled multichannel potentiostat was used for potential application and current monitoring duties. The sensor responses were saved in ASCII format to facilitate post-run analysis in Microsoft Excel. Cyclic voltammetry (CV) was utilised to investigate the manner in which the interference signal contributed to the total signal obtained at the biosensor in the presence of glucose. The kinetic parameters Imax and the apparent Michaelis-Menten constant, K′m, were calculated for the sensor operating under flow-injection conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call