Abstract

In this work, the thermal decomposition of copolymers based on polyethylene glycol fumarate with the acrylic acid using various ratios of initial monomers has been studied for the first time. The samples were studied in air and nitrogen. According to the thermograms analysis, it was found that the copolymer sample decomposition begins at higher temperatures for a copolymer with high content of polyester resin. The copolymer is vigorously oxidized by the oxygen when heated in air, and one can observe almost complete sample decomposition, whereas it decomposes with a residue of ~ 15% in an inert medium. The activation energies for copolymers with different compositions were estimated using the differential methods of Freeman-Carroll, Achar and Sharpe-Wentworth. The activation energy values found by the three methods demonstrated a good convergence. It was shown that, the activation energy values are higher (~ 200 kJ/mol in the inert medium, and ~ 95 kJ/mol in the oxygen atmosphere) for a copolymer with a lower composition of polyester resin, and the activation energy is ~180 and ~85 kJ/mol for a copolymer with a greater composition of p-EGF-AA. The copolymer is more thermostable in the nitrogen atmosphere according to the kinetic parameters. Additionally, there were determined the thermodynamic characteristics, such as the Gibbs energy (∆G) and the entropy (∆S). They also confirm the destruction process dependence on the components ratio in the synthesized copolymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.