Abstract

New 3D micro-nanostructured composite materials have been synthesised. These materials comprise SiO2/CaCO3/Corg/NdVO4NPs and SiO2/CaO/Corg/NdVO4NPs, exhibiting strong upconversion luminescence. The synthesis was accomplished by metabolically doping diatom cells with neodymium and vanadium. Subsequently, the biomass of these doped diatoms was subjected to pyrolysis at 800 °C. The morphology, structure, and physicochemical properties of the doped diatom biomass as well as dried (SiO2/CaCO3/Corg/NdVO4NPs) and pyrolysed (SiO2/CaO/Corg/NdVO4NPs) samples were characterised using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD), thermal analysis (TG), and fluorescence spectroscopy (FS). Studies have shown that the surface of diatom shells is covered with trigonal prismatic nanocrystallites (nanoparticles) of NdVO4 with dimensions of 30-40 nm, forming the crystallite clusters in the form of single-layer irregular flakes. The synthesised composites produced intense anti-Stokes fluorescent emission in the visible region under xenon lamp excitation in the near-infrared (λex = 800 nm) at room temperature in an ambient atmosphere. Such materials could be attractive for applications in solar spectrum conversion, optical sensing, biosensors, or photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.