Abstract

In this article, multiwalled carbon nanotubes (MWCNTs) have been synthesized on the surface of a diatomite mineral impregnated with transition metal salts using a propane-butane mixture in a chemical vapor deposition reactor at atmospheric pressure. The catalyst concentration and synthesis temperature have been varied in order to understand their effects on the formation of MWCNTs and their morphology. Diatomite was chosen as a catalyst carrier due to its elemental composition. It is mainly composed of amorphous silica, quartz and also contains such metals as Fe, K, Ca, Mn, Cr, Ti, and Zn, which makes it a promising material for use as a catalyst carrier when synthesizing carbon nanotubes (CNTs) by catalytic chemical vapor deposition (C-CVD). For the synthesis of carbon nanotubes by C-CVD on the surface of the diatomite, the following salts were used as a catalyst: CoCl2·6H2O; Ni(NO3)2·6H2O, and the concentrations of the solutions were 0.5; 1.0 and 1.5 M. Natural diatomite was characterized by X-ray diffraction analysis (XRD) and Scanning Electron Microscopy (SEM) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.