Abstract

A low-cost deuterated electrolyte suitable for in situ neutron diffraction measurements of normal and high voltage Li-ion battery electrodes is reported here. Li[Ni0.4Mn0.4Co0.2]O2/graphite (NMC(442)/graphite) pouch cells filled with 1:0.1:2 (molar ratio) of lithium bis(fluorosulfonyl) imide (LiFSi):LiPF6: ethyl acetate (EA) and LiFSi:LiPF6:deuterated EA (d8-EA) electrolytes were successfully cycled between 2.8V and 4.7V at 40°C for 250h without significant capacity loss, polarization growth, or gas production. The signal-to-noise ratio of neutron powder diffraction patterns taken on NMC(442) powder with a conventional deuterated organic carbonate-based electrolyte and filled with LiFSi:LiPF6:d8-EA electrolyte were virtually identical. Out of all the solvents widely available in deuterated form tested in highly-concentrated systems, EA was the only one providing a good balance between cost and charge-discharge capacity retention to 4.7V. The use of such an electrolyte blend would half the cost of deuterated solvents needed for in situ neutron diffraction measurements of Li-ion batteries compared to conventional deuterated carbonate-based electrolytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.