Abstract

Segmental bony defects of the mandible constitute a complete loss of the regional part of the mandible. Although several types of customized three-dimension-printed mandible prostheses (CMPs) have been developed, this technique has yet to be widely used. We used CMP with a pressure-reducing device (PRD) to investigate its clinical applicability. First, we used the finite element analysis (FEA). We designed four models of CMP (P1 to P4), and the result showed that CMP with posterior PRD deployment (P4 group) had the maximum total deformation in the protrusion and right excursion positions, and in clenching and left excursion positions, posterior screws had the minimum von Mises stress. Second, the P4 CMP-PRD was produced using LaserCUSING from titanium alloy (Ti-6Al-4V). The fracture test result revealed that the maximum static pressure that could be withstood was 189 N, and a fatigue test was conducted for 5,000,000 cycles. Third, animal study was conducted on five male 4-month-old Lanyu pigs. Four animals completed the experiment. Two animals had CMP exposure in the oral cavity, but there was no significant inflammation, and one animal had a rear wing fracture. According to a CT scan, the lingual cortex of the mandible crawled along the CMP surface, and a bony front-to-back connection was noted in one animal. A histological examination indicated that CMP was significantly less reactive than control materials (p = 0.0170). Adequate PRD deployment in CMP may solve a challenge associated with CMP, thus promoting its use in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call