Abstract

In this paper, a high-order and accurate method is proposed for solving the unsteady two-dimensional Schrödinger equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivatives and a boundary value method of fourth-order for the time integration of the resulting linear system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables. Moreover this method is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are compared with analytical solutions and with those provided by other methods in the literature. These results show that the combination of a compact finite difference approximation of fourth-order and a fourth-order boundary value method gives an efficient algorithm for solving the two dimensional Schrödinger equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.