Abstract

As the analysis of the human genome proceeds at an ever-increasing pace, many genes have been identified which are the site for mutations responsible for inherited diseases. The identification of the mutations within these genes has become a major application of molecular biology technologies, and to this end a number of mutation detection systems have been developed for use in diagnostic and research laboratories. The uses of these mutation detection systems are in the diagnosis of inherited disease (both prenatal and neonatal) and in an understanding of the function of the affected protein by cataloguing the range of mutations. Two of these mutation detection systems are reviewed here. Both rely on chemical modification of mismatched nucleotides, by either carbodiimide or hydroxylamine and osmium tetroxide. The methods are termed the carbodiimide (CDI) and the Chemical Cleavage of Mismatch (CCM) methods. The history and evolution of the methods is tracked, illustrating the way in which they developed, both as suitable technology became available (for example, the polymerase chain reaction) and as a result of a specific need. The current methodologies are briefly discussed, followed by a discussion of their applications, especially in the realm of disease mutation detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call