Abstract

The retroviral genome consists of two identical RNA molecules physically linked together close to their 5′ end, in a region called the Dimer Linkage Structure (DLS). Recent findings suggest that dimerization is involved in encapsidation, regulation of translation and reverse transcription. Previous in vitro studies localized the DLS of HIV-1 in a region downstream of the splice donor (SD) site. More recently, we showed that dimerization of HIV-1 RNA also involves sequences upstream of the SD site. Modification interference experiments and site-directed mutagenesis were used to identify the nucleotides required in the dimerization process of HIV-1 RNA. Our results point out a self-complementary sequence located in a hairpin loop, between the Primer Binding Site (PBS) and the SD site, as the Dimerization Initiation Site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.