Abstract

Conidia of the cellulolytic strain Trichoderma reesei F522 were mutagenized with UV irradiation and N-methyl|-N'-nitro-N-nitrosoguanidine (NTG). A visual agar plate detection system was developed, using esculin and ferric ions, to identify mutants of T. reesei with increased beta-glucosidase activity. Selected mutants were tested for production of extracellular cellulases in shake flasks on autohydrolyzed wheat straw as carbon source. The most active mutant V-7 showed about 6-times higher activity of beta-glucosidase than the parent strain F-522, whereas the filter paper degrading and endo-1,4-beta-D-glucanase activities increased by 45% and by almost 31%, respectively. Cellulase preparations obtained from the parent and mutant strains were then used along with Kluyveromyces fragilis cells for ethanol production from ethanol-alkali pulped straw in the simultaneous saccharification and fermentation (SSF) process. From 10% (w/v) of straw pulp (dry matter), 2.5% (w/v) ethanol was obtained at 43 degrees C after 48 h using cellulase derived from the parent strain of T. reesei. When the beta-glucosidase-hyperproducing mutant V-7 was employed, the ethanol yield in the SSF process increased to 3.4% (w/v), the reaction time was shortened to 24 h and no cellobiose was detected in straw hydrolyzates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call