Abstract

Flystrike, primarily caused by Lucilia cuprina, is a major health and welfare issue for sheep wool industries. Current chemical-based controls can have limited effectiveness due to the emergence of resistance in the parasite. RNA interference (RNAi), which uses double-stranded RNA (dsRNA) as a trigger molecule, has been successfully investigated for the development of innovative pest control strategies. Although RNAi offers great potential, the efficient identification, selection of target genes and delivery of dsRNA represent challenges to be overcome for the successful application of RNAi for control of L. cuprina. A primary L. cuprina (blowfly) embryo cell line (BFEC) was established and confirmed as being derived from L. cuprina eggs by PCR and amplicon sequencing. The BFECs were successfully transfected with plasmids and messenger RNA (mRNA) expressing fluorescent reporter proteins and dsRNA using lipid-based transfection reagents. The transfection of dsRNA into BEFC in this study suggested decreased mRNA levels of target gene expression, which suggested RNAi-mediated knockdown. Three of the dsRNAs identified in this study resulted in reductions of in target gene mRNA levels in BFEC and loss of biological fitness by L. cuprina larvae in a feeding bioassay. This study confirms that the novel BFEC cell line can be used to improve the efficacy of dsRNA-mediated screening to accelerate the identification of potential target genes in the development of RNAi mediated control approaches for L. cuprina. The research models established in this study are encouraging with respect to the use of RNAi as a blowfly control method, however further improvement and validation are required for field applicationsnot prefect, and could be ongoing developing. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.