Abstract

Conditions for the preparation of carbon nanomaterials for embedding into the discerning layer of a piezoelectric immunosensor are described. The effect of the oxidation method, temperature, and the duration of treatment of nanomaterials with an oxidizing agent on the surface concentration of active functional groups is demonstrated. It is shown that the use of carboxylated carbon nanotubes (CNT) increases the efficiency of their binding to biomolecules and increases the stability of the discerning layer of a piezoelectric sensor when measurements are carried out in liquid media. Conditions for the determination of antibiotics using piezoelectric immunosensors modified with carbon nanomaterial were studied including the choice of immunoreagent concentrations and assessment of the selectivity of antibiotic determination. The CNT-based piezoelectric immunosensors providing rapid, highly sensitive, and selective determination of the analyte at the MRL level and below it in food products and biological fluids are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call