Abstract

The discovery of catalysts that can selectively couple unprotected peptide fragments would revolutionize protein chemistry by allowing convergent polypeptide synthesis. Proteolytic enzymes have the capability to perform this chemistry because the protein can specifically recognize and bind to C-terminal and N-terminal peptide sequences, activate the C-terminal peptide sequence by forming an acyl-enzyme intermediate, and couple the two peptide fragments together. However, barriers that limit the use of proteases as catalysts for convergent peptide synthesis include (i) the stability of proteolytic enzymes in organic solvent systems; (ii) a simple and effective C-erminal and N-terminal protecting group strategy; and (iii) the isolation of the polypeptide product from the reaction mixture. In the previous paper we reported the stabilization of enzymes by the covalent attachment of proteins through their ο-lysine residues to a series of carbohydrate-based macromolecules. In this paper we report the use of carbohydrate protein conjugates of proteases [CPC(proteases)] as catalysts for peptide bond synthesis and a general strategy for convergent oligopeptide synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call