Abstract

The mechanisms underlying nervous system injury, such as spinal cord injury (SCI), traumatic brain injury (TBI), and peripheral nerve injury are complex and not well understood. Following acute tissue damage and cell death, inflammatory processes cause ongoing damage. Many factors regulate this inflammation, including factors that modulate chemokine expression. Serine proteases, including those of the thrombotic and thrombolytic pathways (e.g., thrombin, tPA, uPA) are upregulated during nervous system damage and can modulate the release and bioavailability of many chemokines. Virus-derived immunomodulators, such as Serp-1, a serine protease inhibitor (serpin), have protective effects by reducing inflammation and tissue damage. However, the precise mechanisms of Serp-1 neuroprotection are still being studied. Compartmentalized in vitro neuron culture systems, such as the Campenot trichamber, are useful for such mechanistic studies. This chapter provides a protocol for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichambers, as well as instructive examples of the types of experiments enabled by these methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.