Abstract

BackgroundRNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule–RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. Scope of the reviewThis review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. Major conclusionsThis review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids–RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. General significanceIt is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.