Abstract

Dendritic cells (DCs) are potent antigen-presenting cells that possess the ability to stimulate naïve T cells. Antigen presentation by mature (activated) DCs is a prerequisite for the stimulation of antigen-specific T cells, whereas antigen presentation by immature DCs results in the generation of specific tolerance. Our aim was to develop calcium phosphate nanoparticles which can serve as carriers of immunoactive oligonucleotides into dendritic cells for their activation. We analyzed size, surface charge, and morphology of calcium phosphate nanoparticles loaded with the TLR ligands CpG and poly(I:C) and also with the antigen hemagglutinin (HA) by scanning electron microscopy, dynamic light scattering, Brownian motion analysis and ultracentrifugation. The uptake of fluorescence-labeled nanoparticles into dendritic cells was illustrated by confocal laser scanning microscopy. Immunostimulatory effects of these nanoparticles on DCs were studied, i.e., cytokine production and activation of the cells in terms of upregulation of surface molecules. We show that functionalized calcium phosphate nanoparticles are capable to induce both innate and adaptive immunity by activation of DCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call