Abstract
BackgroundThe grades of recommendation, assessment, development and evaluation (GRADE) approach is widely implemented in systematic reviews, health technology assessment and guideline development organisations throughout the world. A key advantage to this approach is that it aids transparency regarding judgments on the quality of evidence. However, the intricacies of making judgments about research methodology and evidence make the GRADE system complex and challenging to apply without training.MethodsWe have developed a semi-automated quality assessment tool (SAQAT) l based on GRADE. This is informed by responses by reviewers to checklist questions regarding characteristics that may lead to unreliability. These responses are then entered into the Bayesian network to ascertain the probabilities of risk of bias, inconsistency, indirectness, imprecision and publication bias conditional on review characteristics. The model then combines these probabilities to provide a probability for each of the GRADE overall quality categories. We tested the model using a range of plausible scenarios that guideline developers or review authors could encounter.ResultsOverall, the model reproduced GRADE judgements for a range of scenarios. Potential advantages over standard assessment are use of explicit and consistent weightings for different review characteristics, forcing consideration of important but sometimes neglected characteristics and principled downgrading where small but important probabilities of downgrading are accrued across domains.ConclusionsBayesian networks have considerable potential for use as tools to assess the validity of research evidence. The key strength of such networks lies in the provision of a statistically coherent method for combining probabilities across a complex framework based on both belief and evidence. In addition to providing tools for less experienced users to implement reliability assessment, the potential for sensitivity analyses and automation may be beneficial for application and the methodological development of reliability tools.
Highlights
The fundamental objective of evidence-based health care is to enable clinicians or policy makers to make informed decisions regarding the development or delivery of effective health interventions
We have developed a semi-automated quality assessment tool (SAQAT) l based on GRADE
Bayesian networks have considerable potential for use as tools to assess the validity of research evidence
Summary
The fundamental objective of evidence-based health care is to enable clinicians or policy makers to make informed decisions regarding the development or delivery of effective health interventions. Applicable tools [e.g. 1] focus on the process and robustness of research synthesis but their practical utility is limited as they do not provide direct information on the quality of evidence underpinning decisions. This requires evaluation of biases across studies, as well as biases detected during the process of evidence synthesis. The Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] is the most widespread method for rating the quality of evidence in healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.