Abstract

The use of naturally present heterogeneous catalysts has recently been an essential issue in the Fenton and photo-Fenton processes. In this study, the uses of basalt as a catalyst for the Fenton and photo-Fenton reactions for methylene Blue (MB) and Basic Red 18 (BR18) degradations were investigated. Basalt was selected because of the presence of the iron (III) oxide in the structure. Basalt was characterized by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) analysis to obtain the chemical composition and the crystalline phase. The surface charge and the surface area were obtained by zeta potential and Brunauer Emmett-Teller (BET) analysis. Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscope (SEM) were utilized to explore the functional group and the surface morphology. Fenton and photo-Fenton processes were applied to explore the best degradation method. Adsorption was also tested and the adsorption process had minimum removal efficiency (12% for MB and 17% for BR18). The removal efficiencies for MB and BR18 by the Fenton process were 87% and 28%, respectively. The photo-Fenton process had maximum removal efficiency with 100% for MB and 70% for BR18. The optimum conditions were 70 mg/L dye concentration, 5 mM H2O2, 1.0 g/L basalt loading and pH 2. Basalt has shown reuse capability as a catalyst for three consecutive cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call